logo_learn_stats

The way to Rename Columns in Pandas (With Examples)

Posted on
banner 336x280

You’ll usefulness one in every of please see 3 modes to rename columns in a pandas DataFrame:

Form 1: Rename Explicit Columns

banner 468x60
df.rename(columns = {'old_col1':'new_col1', 'old_col2':'new_col2'}, inplace = True)

Form 2: Rename All Columns

df.columns = ['new_col1', 'new_col2', 'new_col3', 'new_col4']

Form 3: Exchange Explicit Characters in Columns

df.columns = df.columns.str.substitute('old_char', 'new_char')

Please see examples display the way to usefulness each and every of those modes in observe.

Alike: The way to Get Column Names in Pandas (3 Forms)

Form 1: Rename Explicit Columns

Please see code presentations the way to rename explicit columns in a pandas DataFrame:

import pandas as pd

#outline DataFrame
df = pd.DataFrame({'workforce':['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],
                   'issues': [25, 12, 15, 14, 19, 23, 25, 29],
                   'assists': [5, 7, 7, 9, 12, 9, 9, 4],
                   'rebounds': [11, 8, 10, 6, 6, 5, 9, 12]})

#record column names
record(df)

['team', 'points', 'assists', 'rebounds']

#rename explicit column names
df.rename(columns = {'workforce':'team_name', 'issues':'points_scored'}, inplace = True)

#view up to date record of column names
record(df)

['team_name', 'points_scored', 'assists', 'rebounds']

Understand that the ‘team’ and ‘points’ columns have been renamed presen all alternative column names remained the similar.

Form 2: Rename All Columns

Please see code presentations the way to rename all columns in a pandas DataFrame:

import pandas as pd

#outline DataFrame
df = pd.DataFrame({'workforce':['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],
                   'issues': [25, 12, 15, 14, 19, 23, 25, 29],
                   'assists': [5, 7, 7, 9, 12, 9, 9, 4],
                   'rebounds': [11, 8, 10, 6, 6, 5, 9, 12]})

#record column names
record(df)

['team', 'points', 'assists', 'rebounds']

#rename all column names
df.columns = ['_team', '_points', '_assists', '_rebounds']

#view up to date record of column names
record(df)

['_team', '_points', '_assists', '_rebounds']

Be aware that it’s sooner to usefulness this form when you wish to have to rename maximum or the entire column names within the DataFrame.

Form 3: Exchange Explicit Characters in Columns

Please see code presentations the way to substitute a particular persona in each and every column title:

import pandas as pd

#outline DataFrame
df = pd.DataFrame({'$workforce':['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'],
                   '$issues': [25, 12, 15, 14, 19, 23, 25, 29],
                   '$assists': [5, 7, 7, 9, 12, 9, 9, 4],
                   '$rebounds': [11, 8, 10, 6, 6, 5, 9, 12]})

#record column names
record(df)

['team', 'points', 'assists', 'rebounds']

#rename $ with emptied in each column title
df.columns = df.columns.str.substitute('$', '')

#view up to date record of column names
record(df)

['team', 'points', 'assists', 'rebounds']

Understand that this form allowed us to briefly take away the ‘$’ from each and every column title.

Extra Assets

Please see tutorials give an explanation for the way to carry out alternative ordinary operations in pandas:

The way to Record All Column Names in Pandas
The way to Type Columns by means of Identify in Pandas
The way to Leave Replica Columns in Pandas

banner 336x280

Leave a Reply

Your email address will not be published. Required fields are marked *